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INTRODUCTION

Population models are important tools for conservationists and represent

applications of population biology theory.  As key components of population viability

analyses (PVA), they are widely applied to rare and endangered species. 

Conservationists and managers use population models to assess population health and

trends, set priorities, and evaluate management options (Burgman et al. 1993).  Different

approaches to PVA, however, can lead to different conclusions, even with the same

original data (Lindenmeyer et al. 1995, Mills et al. 1996, Pascual et al. 1997, Brook et al.

1999), and these differences can contribute to controversy and unstable priorities for

management of imperiled species and the public lands on which they exist (Noon and

McKelvey 1996).  One common approach to PVA is to assemble field observations of

survival and recruitment into a stage- or age-based transition matrix.  Schemske et al.

(1994) suggested that matrix models could be widely effective in setting recovery

objectives and evaluating management proposals for endangered plants.  Partly because

of its flexibility, the technique has been widely applied to rare and common species with

diverse life-histories.  Even among matrix models, however, differences in

implementation may produce divergent results.

Transition matrices can generate estimates of deterministic parameters such as

population growth rate, sensitivities and elasticities, equilibrium population structure, and

reproductive values.  Often of greater concern to the conservationist are probabilistic

measures of population health, such as extinction risk, time to extinction, and stochastic
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growth rate.  These measures of population viability can be estimated when demographic

and/or environmental stochasticity are incorporated into the model (Menges 2000,

Caswell 2001).  Inclusion of environmental stochasticity into matrix models has

generally been accomplished through one of two mechanisms, matrix or element

selection.  For both methods of modeling environmental stochasticity, repeated estimates

of annual recruitment, growth and survival must be available or temporal variability must

be somehow assumed.  Matrix selection involves shuffling whole observed matrices at

random at each time step of a simulation, while element selection requires drawing each

component of the matrix at random from some statistical distribution.  However, the two

methods do not always give the same results (Greenlee and Kaye 1997, Kaye et al. 2001). 

In addition, for implementation of the element selection method, too few data are usually

available for a formal assessment of goodness of fit, so a statistical distribution is often

assumed and the distribution is fit to the data at hand.  In some cases, even if a reliable

test of fit is possible, the statistically best distribution may be rejected on the basis of

biological or theoretical reasons, or because of modeling convenience.  Unfortunately,

different statistical distributions of such input variables may change assessments of

population viability (Nakoaka 1997), and information on actual temporal variation in

demographic parameters is sparse (Menges 1992).  The overall implications of which

stochastic method is chosen remain unclear.

Another issue that must be addressed when stochastic stage-based models are

implemented with the element selection method is that overall survival per stage should

be limited to #100%.  When individual transitions (elements) are selected at random, the
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cumulative survival (the sum of all transitions in a matrix column) for a given stage can

(but should not) exceed 100%.  It is important to constrain survival so that it is never

greater than 100%, or the model will create individuals from nothing (Caswell 2001) and

produce an overly optimistic estimate of population viability.  Some authors of PVAs

using stochastic matrix models have either ignored this issue or not mentioned it in their

papers, and those that acknowledge the problem have used a variety of techniques to

resolve it (e.g., Menges 1992, Gross et al. 1998, Kaye et al. 2001).  To date, no empirical

comparisons of survival constraint methods have been conducted.  This problem does not

exist for age-based models since only one transition (survival to the next age) is selected

at random for each age-class, nor for matrix selection methods because survival never

exceeds 100% in an observed matrix.

No comparisons of different methods of limiting survival to 100% are available,

only a few papers compare techniques of incorporating stochasticity, and those that do

explore the results from a single species (Greenlee and Kaye 1997, Nakoaka 1997, Kaye

et al. 2001).  In this paper, we compare seven methods of stochastic matrix simulation

(matrix selection and six statistical distributions of element selection) and two methods of

constraining survival to #100%.  We evaluate the results with a measure of population

viability (stochastic growth rate) derived from multiple species and several populations. 

Our primary objectives are to 1) test for an effect of stochastic method on population

viability estimate, 2) test for an effect of survival constraint method, 3) investigate why

different methods yield divergent results, and 4) measure the correlation between

estimates.
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METHODS

Study species and data sets

Data from five plant species were included in this analysis: Astragalus tyghensis

Peck (Fabaceae), Cimicifuga elata Nutt. (Ranunculaceae), Haplopappus radiatus Nutt.

(Cronq.) (Asteraceae), Lomatium bradshawii Rose (Math. & Const.) (Apiaceae), and L.

cookii Kagan (Apiaceae).  All of these taxa are herbaceous perennials and rare or

endangered in the western United States (Oregon Natural Heritage Program 2001).  Data

were collected from multiple populations of each species over a period of five to ten

years (Table 3.1); the number of observed transition matrices for each population was

one less than the number of years of observation, except for L. bradshawii because one

year of sampling was skipped resulting in only seven matrices from nine years of

observation.  In total, multi-year data from 27 populations were used.  We included

species from a variety of habitats and ecoregions in Oregon.  In all cases, individual

plants were followed through time as mapped and/or tagged individuals, and recruitment

of seedlings (first year plants) was monitored annually.  Stage-specific fecundity was

estimated based on per capita seed production in year t and seedling recruitment in year

t+1 (as in Kaye et al. 2001; “anonymous reproduction” of Caswell [2001:173-174]), or, if

only one reproductive stage was recognized, based on seedlings
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observed in year t+1 per reproductive plant in year t.  No seed bank stage was included in

our models because biological evidence from studies of these species suggests that their

seeds may not persist in the soil or have delayed germination.  For example, no viable

seeds more than one-year-old have been detected in field studies of Lomatium species

(Thompson 1985), including L. bradshawii (Kaye et al. 2001), or H. radiatus (Kaye

unpublished data).  Seeds of C. elata stored under dry, room-temperature conditions do

not remain viable for greater than one year, and field sown seeds of A. tyghensis emerge

in the following spring only (Kaye unpublished data).  Information on each species,

including field sampling techniques, individual matrix construction methods, and the

annual matrices, is available in the Appendix.

Stochastic population growth rate

We focused on stochastic population growth rate (λs) as a measure of population

viability for this analysis.  Stochastic growth rate was chosen over the more conventional

extinction probability because it is not tied to a particular time horizon.  Most estimates

of extinction probability are based on simulations for a particular period of time, such as

100 years, and this time period may be selected to resolve differences between

populations or treatments (i.e., if all populations go extinct after 100 year projections, the

time window may be shortened until at least some populations have a chance of

persisting).  However, this variability in time span makes it difficult to compare results

across studies (Menges 2000), and we found it difficult to identify a single time horizon

appropriate to all 27 data sets included in this study.  Any one period of simulation
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resulted in several populations with extinction probabilities of either 0 or 1.  This resulted

in an inability to resolve differences in these populations, and created many constant

values inappropriate for evaluation with analysis of variance (ANOVA).  Unlike the

deterministic growth rate (λ), λs incorporates environmental variability and does not

assume a stable (equilibrium) population structure (Tuljapurkar 1990).  Further, as

stochasticity increases, λs declines, and is always less than the average growth rate

(which estimates λ) (Caswell 2001).    Populations with λs greater than 1.0 are projected

to grow, while those with λs less than 1.0 are projected to decline, making λs a convenient

measure of population viability in stochastic environments.

To calculate λs, we followed the numerical simulation method outlined in Caswell

(2001:396).  When the log of population growth is averaged over a very large number of

time steps, it converges to a fixed value determined by vital rates and environmental

processes (Caswell 2001, Tuljapurkar 1990).  For each type of simulation, we ran the

models described below for 10,000 time steps (discarding the first 500 to omit transient

effects) to calculate the stochastic growth rate.  All stochastic modeling described in this

paper was implemented in MATLAB 5 (The Mathworks 1998).

Modeling environmental stochasticity

Environmental stochasticity was modeled in two main ways, through matrix

selection and element selection.  To incorporate stochasticity via matrix selection, the

observed matrices were assumed to be independently and identically distributed (iid).  At

each time step of a simulation, one matrix was selected at random and post-multiplied by
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the vector of individual abundances (e.g., Bierzychudek 1982, Lennartsson 2000).  The

initial stage distribution was the average observed distribution for each population.  In

element selection, a statistical distribution was first fit to the observed data for each

transition matrix element, then random values were drawn from the distribution to create

a new matrix at each time step.  This matrix was then post-multiplied by the abundance

vector to iterate the model, as above.  

We used six different statistical distributions to compare the effect of input

distribution shape on λs.   Each of these distributions has been used in prior stochastic

modeling studies (Table 3.2) or has been recommended for examination.  They included

the beta, truncated normal, truncated gamma, triangular, uniform, and

observed/discontinuous (see Figure 3.1 for examples).  Transition probabilities must be

bounded by 0 and 1.  Therefore, the fitted distributions must also be constrained to

prevent transition probabilities less than zero or greater than 100% from being selected at

random, a modeling error that is biologically unsound.  Therefore, the beta distribution is

a good candidate, since it is bounded by 0 and 1 by definition.  The beta is also very

flexible, capable of fitting to an extremely wide variety of distribution shapes (Evans et

al. 2000).  The normal distribution, on the other hand, must be truncated to 0 and 1, and

in our implementation this was accomplished by omitting values outside <0 and >1 and

resampling until an appropriate value was obtained.  The gamma distribution is bounded

by 0 on the left tail, but was truncated to 1 on the 
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Table 3.2.  Examples of stochastic models, their use of statistical distributions for varying
transition elements, and methods of constraining survivals to 100%.

distribution species or study survival constraint citation

beta Hudsonia montana transitions
contingent on
survival

Gross et al. 1998

beta Desert tortoise none required Doak et al. 1994

normal comparative study none Guerrant 1996

truncated normal Totoaba macdonaldi none required Cisneros-Mata et al.
1997.

truncated normal various,
comparative

resampled Menges 1992

truncated normal Lomatium
bradshawii

if survival >100%,
rescaled to 100%

Kaye et al. 2001

truncated normal
and lognormal

Yoldia notabilis none required Nakoaka 1997

truncated
lognormal

giant kelp not indicated
(none?)

Burgman and
Gerard 1990

perfect positive
correlation

lognormal
(truncated for
survivals)

northern spotted owl Akçakaya and
Raphael 1998

gamma Chinook salmon none required Ratner et al. 1997.

uniform Pediocactus
paradinei

not indicated
(none?)

Frye 1998

uniform Astragalus
cremnophylax 

not indicated
(none?)

Maschinski et al.
1997.

uniform Euphorbia clivicola not indicated
(none?)

Pfab and Witkowski
2000

observed/
discontinuous

red-cockaded
woodpecker

none required Maguire et al. 1995
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Figure 3.1.  Probability densities of some statistical distributions fit to examples of
observed values of transition rates recorded over several years of observation.  Each
column illustrates a different distribution (beta, truncated gamma, truncated normal,
triangular, and uniform) and each row represents the fit of these distributions to the data
listed at the right, which are selections from among the data sets used in this paper. 
These data represent the observed values for a particular transition, as indicated in the
notes at the far right.  Note that the truncated normal distribution is truncated at both tails
and the truncated gamma is truncated only on the right, and the degree of truncation
differs substantially among observed data sets.  
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right by omitting values >1 and resampling.  The triangular distribution may be

appropriate when only minimum and maximum values are known (Caswell 2001),

although a most likely value must be specified.  We fit this model to our observed data by

finding the minimum and maximum values, and using the mean as the most likely value. 

For the uniform distribution (also known as the rectangular distribution), we determined

only the minimum and maximum values from our data sets.  Finally, the

observed/discontinuous distribution was defined here as the set of observed values for

each transition, and these were drawn at random with equal probability (iid).  

The method of matching moments was used to fit the beta and gamma

distributions to our data because the observed values contained zeros and ones in some

cases.  An alternative would have been to use maximum likelihood estimation

techniques, but this would have forced us to drop observed values equal to 0 or 1. 

However, dropping values would necessitate dropping whole matrices if we were to

compare element selection with matrix selection methods, and we wanted to emphasize

the empirical basis of our data sets while maximizing the available sample sizes.  Frey

and Burmaster (1999) have shown that, for the beta distribution at least, although the

method of matching moments produces less efficient statistical parameter estimates than

maximum likelihood methods, matching moment estimates are less sensitive to extreme

values.  Therefore, we used matching moment estimators because they appear to be

adequately robust and because they tolerated the occasional zeros and ones among our

observed values.  For all our simulations, stochasticity was applied only to the transition

elements; recruitment parameters were held constant. 
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Constraining survival

We examined two methods of constraining overall survival to 100%.  In the first

method, if the sum of transition probabilities for a given stage exceeded 100%, the entire

set for that stage was resampled until it did not exceed 100% (a method employed by

Menges 1992).  We refer to this method as resampling.  Our second method was to

temporarily include mortality in our observed fates, draw a set of transition probabilities

(including mortality) for each stage, rescale all probabilities to sum to 100%, then omit

the mortality values in the final matrix.  In this process, rescaling was applied at every

time step to every stage, forcing the sum of all fates (including mortality) to equal 100%

(which they always do in the real world).  We refer to this method as rescaling and

believe it has not been employed previously.

Analysis

Testing for effects of input distributions, survival constraint, and study species.  We

tested for effects of input distribution, survival constraint method, species, and

interactions among these factors using SAS proc mixed (SAS Institute, Inc. 1990).  Use

of raw estimates of λs as a response variable posed a difficulty because survival constraint

methods were applied only to the element selection procedures, not the matrix selection

procedure, making our design unbalanced.  Therefore, we chose a response variable that

compared the relative response of each element selection procedure to matrix selection

estimates of λs.  Specifically, for each population, we calculated the proportional

difference in λs between the matrix selection procedure and the procedures using various
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element selection distributions and survival constraint methods (i.e., [λs element!λs

matrix]/λs matrix).  This step was appropriate given that we are interested in the relative

effects of these methods more than their actual estimates of mean stochastic growth rate. 

We considered this response variable to be structured in a split plot design, with species

as the whole plot.  Species was included as a fixed effect to test for differences among

taxa in their PVA sensitivity to model assumptions, and for interactions with the other

factors.

Detecting bias in mean and variability.  To explore the fit of each simulation technique

to the observed data, we compared the mean and variability of each transition element

from the observed data sets with results from each of the element selection and survival

constraint techniques.  First, we used each of the element selection methods to generate

1000 random matrices from each population using each of the survival constraint

methods.  Second, we calculated the mean and standard deviation (STD) for each

transition element (excluding recruitment) from these simulated data sets.  Third, we

calculated the relative difference in mean and STD between those estimated from the

observed values and those calculated from the simulated matrices.  We defined bias

broadly to include the combined differences between observed and simulated means and

STDs due to survival constraint method and distribution shape.  We then tested for

correlations between mean estimates of relative bias and mean relative differences in λs,

using multiple regression, to determine how much of the simulation technique effects

were due to these biases.
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This process was repeated using estimates of mean relative bias weighted by the

elasticity of each element, so that bias in elements of relatively low importance to growth

rate were down-weighted and those with high influence were weighted more strongly.

Although stochastic elasticities may be estimated as measures of the importance of

individual transitions on λs (Tuljapurkar 1990a, Caswell 2001:402-408), we used

elasticities calculated from mean observed matrices because they are easier to calculate

and they are excellent predictors of stochastic elasticities, even though the deterministic

and stochastic growth rates may be quite different (Caswell 2001, Caswell and Kaye in

press).

Correlation among techniques.  Even if the various techniques for incorporating

stochasticity result in different estimates of λs, we would like to know if they yield

similar results on a relative basis.  That is, if one population has a higher λs than another

as measured by one stochastic method, is it also higher as measured by a different

method?  To measure their degree of association, we tested for correlations between

estimates of λs from each method of including temporal variability using the Pearson

product moment (R), and this procedure was repeated for each method of constraining

survival.
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RESULTS

Effects of input distributions, survival constraint, and study species

Model procedures had substantial effects on estimates of stochastic population

growth rates.  The choice of input distributions and survival constraint methods both had

significant effects on mean proportional differences in λs relative to the matrix selection

method (Table 3.3), and there was a significant two-way interaction between these

factors (P#0.0001).  That is, the resampling method of constraining stage-specific

survival to # 100% yielded mean estimates of λs consistently lower than the rescaling

procedure, but the magnitude of this reduction differed among stochastic element

selection methods (Figure 3.2).  Study species did not affect these results (P=0.804), and

there were no two- or three-way interactions with taxon (P$0.333).  Estimates of λs

spanned from 0.658 to 1.173, making the results applicable to a wide range of population

behavior.

When the resampling survival-constraint method was applied, most element-

selection distributions yielded estimates of λs equal or lower than estimates derived by

matrix selection.  The beta distribution yielded the lowest relative estimate of λs (14%

lower than the matrix shuffle method), while the truncated gamma and

observed/discontinuous distributions were only slightly (but significantly) closer to the

matrix shuffle estimates (Figure 3.2).  Both the truncated normal and uniform

distributions produced mean λs estimates indistinguishable from matrix selection.  The

mean estimate from the triangular distribution was intermediate between these two 
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Table 3.3.  Split-plot ANOVA for the effects of species, statistical distribution of input
variables, and survival constraint method on the proportional change in λs relative to the
matrix selection procedure (NDF and DDF are numerator and denominator degrees of
freedom).

Source NDF DDF Type III F Pr > F

whole plot effects

species 4 22 0.4 0.8044

subplot effects

survival constraint method 1 242 686.17 0.0001

stochastic method 5 242 53.79 0.0001

interactions

stochastic method×constraint
method 5 242 24.91 0.0001

species×constraint method 4 242 0.94 0.4434

species×stochastic method 20 242 1.12 0.3326

species×stochastic
method×constraint method 20 242 0.46 0.9788
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Asterisks (*) indicate a significant difference (0.05 level) between the stochastic growth
rate calculated via matrix selection and each element selection method.
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groups of procedures.  In contrast, under the resampling procedure, most λs estimates

were higher than those from matrix selection.  Estimates from the uniform distribution

were highest (about 4% higher than estimates from matrix selection) and those from the

beta, truncated gamma, and observed/discontinuous were lowest (Figure 3.2).  Those

from the truncated normal and triangular distributions were intermediate.  Estimates from

the observed/discontinuous distribution did not differ significantly from the matrix

selection method (Figure 3.2).

Evaluation of bias in mean and variability

Unweighted mean and STD.  Bias was detected in the unweighted mean and STD of

several element selection methods and both survival constraint techniques.  Compared to

the observed values, mean transition element values were reduced by 12-15% by the

beta, truncated gamma, and observed discontinuous distributions when the resample

constraint method was used.  When the rescale technique was employed, however, these

distributions had no detectable bias on transition means (Figure 3.3, top left).  In contrast,

the truncated normal, triangular, and uniform distributions consistently increased the

mean over the observed values by 6-31%, regardless of survival constraint method. 

Standard deviations were also altered by the different methods.  In all cases, STDs were

depressed relative to the observed values.  Values derived from the beta, truncated

gamma, and observed/discontinuous showed the least bias (6-21% lower than observed),

while those from the triangular had the greatest reduction (64-83%), depending on the

method of constraining survival (Figure 3.3, middle left). 
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difference from zero at the 0.05 level of probability.  
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There were no consistent differences in bias to the standard deviation caused by the two

survival constraint procedures.  Multiple linear regression indicated that bias in the mean

had a significant effect on proportional difference in λs (P=0.0017), while reductions in

STD did not (P=0.6603).  Bias in the mean explained 60.7% of the variability in λs

estimates (Figure 3.3, bottom left).

Weighted mean and STD.  When bias in mean transition elements was weighted by

elasticity, a somewhat different picture emerged.  The resampling procedure resulted in

varying degrees of negative bias, depending on the statistical distribution used to

incorporate stochasticity.  For example, the beta, truncated gamma, and

observed/discontinuous distributions resulted in reductions in the weighted means of 12-

16% (similar to the unweighted case), but the truncated normal and triangular biased the

weighted mean downward by 3 and 6%, respectively (Figure 3.3, top right).  The uniform

distribution had no effect on the weighted means.  The rescaling procedure resulted in no

detectable bias on the weighted mean transition rates for all stochastic methods except

the uniform, which increased the mean by about 2% (Figure 3.3, top right).  Overall,

weighted STD biases differed little from the non-weighted cases (Figure 3.3, middle

right).

As in the unweighted case, multiple regression indicated a significant linear

correlation between differences in λs and bias in the weighted mean (P<0.0001), but not

STD (P=0.1038).  Bias in the weighted mean explained 98.3% of the variability in

proportional differences in lambda between element selection techniques and matrix 
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selection.  The slope of this relationship was indistinguishable from 1 (95% CI 0.93-1.1),

and the intercept was close to, but slightly higher than, 0 (95% CI 0.018-0.031).  Thus,

variation in λs estimates derived through element selection relative to matrix selection

were due almost entirely to biases in the weighted mean transition rates.

Correlation among techniques

Most methods of incorporating stochasticity into matrix models produced

estimates of λs that were highly correlated.  For both methods of survival-constraint,

resampling and rescaling, the lowest correlation was between estimates via the beta and

observed/discontinuous distributions (R=0.862 and 0.849, respectively) and the highest

was between the truncated gamma and uniform (R=0.992 and 0.992, respectively) (Table

3.4).  Regardless of which survival-constraint technique was used, at least 16 of the 21

possible correlations were $0.9.

DISCUSSION

Effects of stochastic methods and survival constraints

Different methods of incorporating stochasticity into matrix models resulted in

substantial variation in estimates of population viability.  The species from which the

observed data were collected, however, had no effect, and estimates of λs spanned a wide

range, suggesting that these results may be broadly applicable.  In element selection, the

distribution shape for sampling transition probabilities had significant
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effects on estimates of stochastic lambda, but the magnitude and direction of this effect

depended on which method was used to constrain stage-specific survival to #100%

(Figure 3.2).  For example, when resampling was used to constrain survivals, the beta,

observed/discontinuous, truncated gamma, and triangular distributions resulted in λs

estimates significantly lower than those derived from matrix selection.  But when

survivals were constrained through rescaling, all distributions, except the

observed/discontinuous, exceeded matrix selection estimates of λs.  Overall, combining

the resampling method with the beta distribution resulted in the lowest mean estimates of

λs (13.8% below the average matrix selection estimates), while rescaling with the uniform

distribution produced the highest (4.3% greater than matrix selection estimates).  Despite

variation in estimates of λs, the different stochastic methods produced highly correlated

results (R=0.849-0.992, Table 3.4), suggesting that although their quantitative estimates

of population viability may have differed, their relative ranking of populations did not.

Concerns that choice of a stochastic method and distribution shape might

influence the results of risk assessment models are not new (Bukowski et al. 1995,

Nakoaka 1996, Hamed and Bedient 1997, Menges 2000, Caswell 2001).  Past

comparisons of matrix and element selection procedures have found both large and small

differences in estimates of population viability.  For example, a comparison from H.

radiatus found that element selection from a truncated normal distribution resulted in

much lower estimates of extinction risk than matrix selection (Greenlee and Kaye 1997). 

Kaye et al. (2001) found estimates of λs derived for L. bradshawii from element selection

(truncated normal distribution) to be identical to, or moderately higher than, estimates



78

from matrix selection.  Extinction probability estimates were either identical or slightly

lower than from matrix selection.  These patterns are consistent with those reported here,

which should be expected because both examples used earlier portions of the same data

sets used in this analysis.  Even so, Greenlee and Kaye (1997) incorporated only four

years of data and Kaye et al. (2001) used six, and both studies used a different approach

to survival constraint than those conducted here (see below).  Although stochastic growth

rate has been recommended as a measure of population viability suitable for comparisons

across studies (Menges 2000), differences among stochastic methods make many

comparisons dangerous.  This problem can be avoided, however, if the same methods are

used among studies (which seldom may be the case; see Table 3.2), or if the estimates of

stochastic growth rate are first adjusted by the cumulative bias of the specific survival

constraint methods and probability distributions.  In general, comparisons across viability

studies should strive to standardize as many model assumptions as possible, a practice

that may find much agreement among techniques (Brook et al. 2000a and 2000b).

Among element selection methods, skewness has been identified as an important

aspect of a distribution with potential effects on estimates of population growth rate

(Slade and Levinson 1984), and the selection of a statistical distribution can, in theory,

substantially affect the results of a risk assessment (Bukowski 1995).  The effects of

different distributions have been much more thoroughly reviewed for randomly varying

recruitment (Tallie et al. 1995) than transition probabilities.  Nakoaka (1997), for

example, estimated λs for two populations of a marine clam by allowing recruitment to

vary according to both lognormal and truncated normal distributions (one-tailed
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truncation was necessary because recruitment must be bounded by zero on the left). 

Relative to the truncated normal, the lognormal decreased λs at one site but increased it at

the second.  In our analyses, recruitment was held invariant and stochasticity was applied

only to the transition probabilities.  If we had allowed recruitment to vary as well, our

results may have differed and/or there may have been an interaction between choice of

recruitment and transition distributions.  Since both types of vital rates are often varied in

stochastic matrix models, this area deserves further research.

Resampling to constrain survival to #100% always reduced λs relative to

rescaling by introducing negative bias into weighted mean vital rates (Figure 3.3).  The

rescaling method, on the other hand, did not introduce measurable bias (except for the

uniform distribution, which was slightly positively biased).  Although researchers have

used various techniques to constrain stage-specific survivals to <100%, or ignored the

problem (Table 3.2), we found the choice of  survival constraint technique to have a

strong effect on our results.  Results from the rescaling technique were fairly consistent

among element selection distributions, with the only significant differences being

between the uniform distribution and the beta, discontinuous/observed, and truncated

gamma (which were indistinguishable from each other, Figure 3.2).  Relative to estimates

from matrix selection, λss were higher by only 1.7% (discontinuous/observed) to 4.3%

(uniform).  Other methods used by previous authors of stage-based stochastic matrix

models include a different form of rescaling used when survivals sum to greater than

100% (without regard to mortality, e.g., Kaye et al. [ 2001]) and making transitions

contingent on underlying vital processes (e.g., Gross et al. 1998).
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One reason for the similarity in results among the element selection methods

compared here with rescaling (in the relative absence of bias) may be that some of their

important differences are in their tails — their chance of extreme events — and these

tails were either bounded to fall between zero and one, or were truncated to do so.  In an

examination of the tail behavior of the lognormal, Weibull, gamma, and inverse gaussian

distributions in Monte Carlo simulations, Haas (1997) found that even at relatively high

standard deviations, the important differences among them were in the extreme (upper)

tails.  Since the distributions with long tails included in our implementations (i.e., normal

and gamma) were truncated, these differences were, at least in part, reduced.  For

example, the triangular and truncated normal distributions have identical peak values, but

substantial portions of both tails of the normal may be cut off (Figure 3.1), thus

increasing the similarity of the two distributions.  Haas (1997) further showed that

identifying the correct distribution from small data sets may be difficult or impossible

(our samples numbered only 4-9, depending on the species), but the differences will be

primarily in the tails.  Again, if the tails are truncated, these differences may be partly

mitigated.  

Although truncation may help explain some of the similarities among the element

selection methods evaluated here, it is not necessarily a recommended practice. 

Especially in cases where only one tail is truncated, omitting chance events in this way

from a distribution will change the mean and reduce variance, as illustrated here by

negative bias in STD estimates (Figure 3.3).  Truncation of transition probabilities drawn

from a normal distribution, especially those near 1, lowered the mean and increased
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extinction probability in viability models of the fish, Totoaba macdonaldi (Cisneros-

Mata et al. 1997).  In the case of Nakoaka’s (1997) marine clam, truncation of the lower

tail in the normal distribution was required to generate random numbers for modeling

variation in recruitment.  This one-tailed truncation increased the mean by about 25% and

decreased the variance by 35% at one site (as discussed in Caswell 2001:412), destroying

the fit of the distribution to the data.  It may be that in many of our cases with observed

data, substantial portions of the normal and gamma probability density functions were

within 0-1, which would explain why truncating them produced little or no effect on the

weighted mean and only “typical” reductions (Figure 3.3) in standard deviation.  Of

course, the effect of truncation will be stronger as the mean approaches 0 or 1 (depending

on the distribution), because a larger proportion of the probability density function will

be truncated.  For example, if a gamma distribution is fitted to a group of observed

transition probabilities close to 1, the upper tail will extend substantially past 1 and

truncation will remove a significant portion of the probability density function.  If this is

a concern, a clever procedure (Burgman and Gerard 1990) that will reduce its effect is to

transform the observed probabilities (p) to q=1-p, fit the distribution, draw a random

sample, then back transform the value to 1-q, thus avoiding most truncations.

Selecting a distribution that does not require truncation may be preferred.  The

endpoints of the uniform and triangular distribution were defined by the observed data, so

they never fell beyond 0-1 in our samples.  However, their shapes are simplistic and they

did not capture variance well, resulting in relatively low STDs (28-83% below observed

values).  Even so, they may be appropriate in cases where few data are available.  For
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example, the triangular distribution may be an efficient substitute for the beta in some

cases (McCrimmon and Ryavec 1964).  The beta distribution, in contrast, is bounded by

0 and 1 and has a flexible shape within those bounds, traits that make it useful for

modeling transition probabilities.  It is perhaps the first distribution that should be

explored when developing a stochastic matrix model with element selection.  The

observed/discontinuous distribution did not allow transition elements to vary outside the

observed limits, and it did not allow selection of values other than those observed.  

Depending on the model, this may or may not be a desirable trait.  When combined with

the rescale survival constraint method, it produced results indistinguishable from those

derived with the beta distribution or matrix selection.  Other distributions that have

received little attention but that stochastic matrix modelers should explore include the S-

distribution, which is based on differential equations and is well suited to probabilities

(Voit and Schwake 2000), and the beta-binomial, which is appropriate for distributions

based on probabilities derived from counts (Griffiths 1973, Tamura and Young 1987,

Kahn and Raftery 1996).  The beta-binomial may be especially useful and appropriate for

stochastic matrix models because it can separate demographic variability from estimates

of environmental stochasticity (Kendall 1998). 

Matrix vs. element selection

Both approaches for incorporating stochasticity, element selection and matrix

selection, have advantages and disadvantages as modeling techniques.  For example,

because element selection can sample from parametric distributions of transition
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probabilities, the possible trajectories that a population size can follow are limited only

by the distribution shape.  In contrast, matrix selection limits the number of pathways a

population can follow in a stochastic simulation because, at each time step, one of a finite

number of matrices must be selected.  Through parametric element selection, a greater

number of possible paths can be explored, especially those that occur with lower

frequency (the tails in a distribution).  These rare events may be important for assessing

chance events like extinction (Burgman et al. 1993).  Element selection may also

accommodate missing data more efficiently than matrix selection by fitting a distribution

to the vital rates for which data are available.  In matrix selection, individual missing

vital rates must be estimated or replaced with pooled data from the other individual

matrices.  However, matrix selection is not confronted with the problem of constraining

stage-specific survivals to #100%, while element selection in most stage-structured

models is.  Finally, element selection may be a better choice when stochasticity must be

applied to individual vital rates through a functional relationship with an environmental

factor, such as precipitation (e.g., Gross et al. 1998).

One weakness of standard element selection methods is that transition

probabilities may not be explicitly correlated with one another, even though a "good"

year for one vital rate, such as survival of reproductive plants, is often a good year for

another, such as fecundity.  Therefore, a matrix could be constructed from random

elements that has a mixture of "good" and "bad" vital rates — a condition that may not

occur in nature.  Matrix selection is not usually faced with this problem since all of the

elements in an individual matrix usually come from the same year and represent observed
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vital rates.  Correlation among vital rates is believed to be widespread (Horvitz and

Schemske 1995, Oostermeijer et al. 1996, Horvitz et al. 1997, Gross et al. 1998, Caswell

2000, Menges 2000, Caswell 2001) and may tend to reduce population viability (Ferson

and Burgman 1995, Cisneros-Mata et al. 1997, Pfab and Witkowski 2000).  In the current

study, differences in estimates of λs were largely explained (R2=98.4%) by degree of bias

in mean transition rates (after weighting with elasticities), and the slope of the regression

line for this linear correlation did not differ from 1.0 (Figure 3.3).  The intercept of this

line was slightly higher (2.4%) than expected, however, and this may be due, in part, to

increases in λs (relative to matrix selection) through omission of correlation structure

during element selection.  Unfortunately, tools for multivariate random number

generation are not widely available (Caswell 2001) for distributions other than the

normal, but recent advances in statistical methods (e.g., Ferson and Burgman 1995, Haas

1999, Fackler 1999) may make their application more accessible for stochastic matrix

models (see Chapter 4).
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Conclusion

For many observed data sets, it may be difficult to test the fit of a particular

distribution, partly because of limited samples (Karian and Dudewicz 2000:90-96). 

Sorribas et al. (2000) demonstrated that even with 160 random samples from known

distributions, a best-fit screening algorithm failed to identify the source distribution in a

majority of cases.  Despite this uncertainty, most stochastic modelers select a distribution

that seems reasonable, fit it to their available data, and execute the model.  We have

shown that distribution choice for transition probabilities may have a strong influence on

stage-structured matrix model outcomes, and this effect is consistent across a variety of

plant species.  Although the effect can cause differences in viability estimates, it was

largely explained by degree of bias induced by the different survival constraint methods

we employed.  Little previous attention has been given to the survival constraint problem,

which applies only to stage-structured models in which individuals can make more than

one transition, but choice of this procedure can be at least as important as element

selection technique.  To avoid bias in influential transitions, we recommend use of the

rescaling procedure used here.  Also, our estimates of λs were strongly correlated among

the various stochastic methods, indicating that the relative values of λs estimates were

generally consistent. 

The wide range of population viability estimates possible from a single data set

analyzed by slightly different methods is cause for concern; one technique might indicate

a robust population while another could project a rapid decline.  We agree with

Beissinger and Westphal (1998) and Menges (2000) that the strength of viability analysis
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rests in its use as a comparative tool rather than a means of assessing the health of

individual populations.  Especially in the face of uncertainty due to measurement error,

which can create very wide confidence intervals on estimates of extinction probability

(Ludwig 1999, Fieberg and Ellner 2000), the use of viability analyses to assess the

relative vigor of a group of populations or the impact of a habitat alteration should be

emphasized over quantitative estimates of viability.  Fortunately, the relative ranking of

populations appears to be fairly robust to differences in stochastic methods.  It may also

be sound practice to compare several methods when making management

recommendations for endangered species (e.g., Pascual et al. 1997 and Fisher et al.

2000).

Although stochastic growth rate has been recommended as a measure of

population viability suitable for comparisons across studies (Menges 2000), differences

among stochastic methods make such comparisons dangerous.  This problem can be

avoided, however, if the same methods are used among studies (which is seldom the case,

see Table 3.2), or if the estimates of stochastic growth rate are first adjusted by the

cumulative bias of the specific survival constraint methods and probability distributions.  
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